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Abstract—Detailed routing is a dead-or-alive critical element
in design automation tooling for advanced node enablement.
However, very few works address detailed routing in the recent
open literature, particularly in the context of modern industrial
designs and a complete, end-to-end flow. The ISPD-2018 Initial
Detailed Routing Contest addressed this gap for modern indus-
trial designs, using a realistic design rules set. In this work,
we present TritonRoute, a detailed router capable of delivering
a DRC-clean routing solution. The key contributions of Triton-
Route include an in-memory router database, along with an end-
to-end detailed routing scheme that is capable of comprehending
connectivity and design rule constraints, with every key detail
revealed by a code release under a permissive open source license.
We evaluate our router using the official ISPD-2018 benchmark
suite and show that TritonRoute achieves an unprecedented
solution quality – improved wirelength and via count, and an
extremely low level of design rule violations (DRCs). Compared
to the known best detailed routing solutions from all published
academic detailed routers, TritonRoute improves wirelength by
up to 0.8% (avg. 0.4%), via count by up to 16.1% (avg. 9.3%),
and DRCs by up to 100% (avg. 92.0%).

I. INTRODUCTION

Detailed routing is a dead-or-alive critical element of

advanced node enablement. New technology nodes come

with smaller feature sizes, while fundamental physical (litho-

graphic patterning, CMP, reliability, variability, etc.) and cir-

cuit (crosstalk, delay, etc.) limitations remain. As a result,

ever-more complex design rules must be comprehended and

satisfied at the detailed routing stage, greatly challenging

routability as well as the architecture and strategy of the

detailed router itself.

Due to the high complexity and enormous solution space for

the VLSI routing problem, the routing is typically split into

global routing and detailed routing stages. In global routing,

the routing region is divided into rectangular grid cells and rep-

resented using a coarse-grained 3D routing graph. Capacities

and various constraints are assigned to the edges and vertices

in this 3D routing graph so that overall routing topology and

layer assignment can be optimized considering routability,

timing, crosstalk, power, etc. The ensuing detailed routing

stage attempts to realize the segments and vias according

to the global routing solution, while minimizing design rule

violations.

The detailed routing problem has been extensively studied

for more than five decades. The fundamental algorithms (e.g.,

Lee’s algorithm, unidirectional and bidirectional A* search,
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ripup-and-reroute paradigm, etc.) and problem formulations

(e.g., channel routing and switchbox routing) have largely re-

mained intact in commercial tools for several decades; see [3]

for a thorough review. These algorithms and formulations

are elaborated to meet real-world requirements (design-rule

correctness, quality of result, scalability, and turnaround time)

and widely deployed in today’s commercial tools that support

foundry N7, N5 or even N3 nodes.
However, only a few academic works [11] even attempt

to present an end-to-end detailed routing flow, and almost

no works make claims to viability in the real-world IC

physical design (P&R) context. Since most detailed routing

research focus on different objectives, such as crosstalk or

new-technology contexts, comparison between these works

is difficult. Further, direct application of academic codes to

modern industrial benchmarks has many hurdles, especially

given that commercial tools and industrial designs satisfy far

more, and more complex, design rules than any academic

tools.
Given the above, it is a highly significant milestone for

the field that the ISPD-2018 contest, on the subject of ini-

tial detailed routing, has recently exposed industrial detailed

routing challenges and benchmarks to the academic commu-

nity [25][38]. The ISPD-2018 benchmark suite provides 10

testcases in 45nm and 32nm nodes, with up to 290K standard

cells and 182K nets. These designs are industrial benchmarks

– including large memory cells, off-track pin access, IO

ports, and power and macro blockages – with realistic design

rules offered in industry-standard input/output formats while

keeping problem complexity tractable to academic researchers

within the four-month contest timespan. However, even two

full years after the initial release of the ISPD-2018 contest,

there are only a few works [4][5][13][18][22][31] capable

of delivering any kind of result; these results have nearly a

thousand, if not thousands, of design rule check violations

(DRCs) for nearly every testcase. Up until now, no work has

come close to approaching the solution quality we expect

from commercial detailed routers, although almost every work

utilizes a variant of the five-decades-old path search algorithm.
Based on the ISPD-2018 Initial Detailed Routing contest,

the present paper describes TritonRoute, an open source

detailed router for advanced VLSI technologies. Our main

contribution is an end-to-end (i.e., complete, and with col-

laterals visible in a permissively open-sourced repository)

detailed routing framework that aims and achieves beyond all

existing academic detailed routers. Highlights of our work are

summarized as follows.

• We propose an end-to-end detailed routing scheme. Our

proposed scheme is capable of comprehending connec-

tivity constraints (i.e., opens and shorts) and design
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rule constraints (i.e., spacing tables, end-of-line (EOL)

spacing, minimum area and cut spacing).

• We build an in-memory router database that complies

with LEF/DEF data models. This non-contest-driven code

infrastructure enables future development and leverage of

our open-source code towards deeper core optimization,

more complete design rule support, and other enhance-

ments.

• We present a number of key ideas in addition to the

well-known A*-based path search. Transparency of our

descriptions is aided by all implementation source codes

being released under a permissive open source license.

• We evaluate our router using the official ISPD-2018

benchmark suite, and show that we reach an unprece-

dented, extremely low level of DRCs (<20) in seven of

10 testcases, which is a 99.3% reduction of DRCs on

average as compared to the known best detailed routing

solutions from all published academic detailed routers.

For the remaining three testcases, we reduce DRCs by

75.1% on average, and by 60.0% at a minimum. Overall,

compared to the known best detailed routing solutions,

TritonRoute improves wirelength by up to 0.8% (avg.

0.4%), via count by up to 16.1% (avg. 9.3%), and DRCs

by up to 100% (avg. 92.0%).

• To the best of our knowledge, we are the first and the only

open source gridded detailed router which is capable of

delivering a DRC-clean detailed routing solution in sub-

65nm technology nodes.

The remainder of this paper is organized as follows. Sec-

tion II provides a brief overview of previous works in the

open literature. As noted above, such literature is sparse as

far as it gives insight into industry routing tools and how they

address modern routing challenges. Section III presents our

router database. Section IV details our overall detailed routing

flow. Section V presents our detailed routing methodology.

Section VI presents our experimental results using the official

ISPD-2018 benchmark suite. Section VII gives conclusions

and directions for ongoing work.

II. PREVIOUS WORKS

As surveyed in [3], previous works on detailed routing can

be categorized into fundamental and conventional algorithms,

and recent developments. Further, we summarize the recent

works targeting the ISPD-2018 initial detailed routing contest.

Fundamental and conventional algorithms. Lee [20] pro-

posed the first maze routing algorithm, i.e., a breadth-first

search that guarantees to find a minimum-cost path between

two terminals if a path exists. Use of “best-first search”, also

known as A* search [27], sometimes in its bidirectional [28]

form, enables maze-based search to focus itself toward de-

sired targets, and reduces effort needed to find a minimum-

cost feasible path. Hadlock [14] and Soukup [30] applied

speedups to Lee’s algorithm and others applied the line-

search paradigm [17] to improve time and space efficiency as

compared to Lee’s and A* algorithms. Hetzel [16] developed

a sequential routing approach using a shortest path algorithm

with respect to euclidean distance. Specialized contexts such

as channel routing [9] and switchbox routing [24], along

with general frameworks such as multicommodity flow [29]

and ripup-and-reroute [32], have respective sub-literatures and

remain as fundamental building blocks of the detailed router

today (cf. [11]).

Recent developments. More recent academic works on de-

tailed routing focus on certain aspects of the modern routing

challenge, mainly to address issues arising with advanced

nodes. [21] gives an excellent summary of the academia-

industry gap for detailed routing as of 2003; much of this

gap remains today. Examples of focused recent works include

Nieberg [26], which proposes techniques for gridless pin ac-

cess in detailed routing. Xu [34] proposes pin-access planning

and regular routing for self-aligned double patterning (SADP).

The works of [6][8][10][23] address the detailed routing

problem in an SADP process context. MANA [2] introduces an

end-end separation and minimum wire length-aware shortest

path algorithm. Han [15] develops a framework to reduce

various DRCs in advanced nodes using multicommodity flow-

based integer-linear programming. BonnRoute [1][11] and

RegularRoute [35] are two works prominent in the recent lit-

erature that present more complete portraits of overall detailed

routing solutions.

ISPD contest-based works. Recently, a few works in the

open literature attempt to address the gap between modern

industrial designs and academic detailed routing flows, based

on the ISPD-2018 initial detailed routing contest [25]. Sun [31]

presents a multi-stage ripup-and-reroute flow for detailed rout-

ing. Kahng [18] proposes an integer linear programming (ILP)-

based parallel intra-layer and sequential inter-layer routing

flow. Chen [4][5] and Li [22] propose a detailed routing

flow using min-area-captured path search on a sparse grid

graph. Gonçalves et al. [12][13] propose a tunnel-aware A*

lower bound, and a design-rule-aware path search algorithm

for detailed routing. Although most recent works use correct-

by-construction or safe-by-construction approaches to prevent

DRCs, none of them is capable of delivering decent solution

quality (that is, in a practical sense) due to the complexity of

developing the necessary router infrastructure.

III. DATABASE

In this section, we list all major objects and structures in

the routing database. In building this database, we follow the

LEF/DEF [40] data model, and reuse the naming convention

from OpenAccess [41] as much as possible. The objects from

LEF are summarized in Table I, and the objects from DEF

are summarized in Table II. The structure of the database is

described in Figure 1. The database is an in-memory, flattened

physical design database. In the top level, the database consists

of a technology library, a top block and several reference
blocks.

A. Technology library

Technology library stores all metal and cut layers, viadefs,
and design rule constraints. A back-of-end-stack layer con-

sists of basic layer information, i.e., type, direction, pitch,

offset, as well as all its applied design rule constraints. A
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Fig. 1: Major database structures.

TABLE I: Database objects from LEF.

Object LEF Keyword Meaning
tech back-end-of-line metal stacks
layer LAYER metal or cut layers
viadef VIA via definitions

constraint

WIDTH default routing width
AREA minimum area rule
SPACING spacing rule
SPACINGTABLE spacing table rule
MINIMUMCUT minimum cut rule
MINWIDTH minimum width rule
MINSTEP minimum step rule

block MACRO standard or macro cells
term PIN standard or macro cell pin
blockage OBS standard or macro cell blockage
pin PORT physical pin
rect RECT rectangle
polygon POLYGON polygon

TABLE II: Database objects from DEF.

Object DEF Keyword Meaning
block DESIGN block-level design
inst COMPONENTS instance of standard or macro cell
term PINS block-level IO pin
blockage BLOCKAGES block-level blockage

net
SPECIALNETS special net
NETS regular net

instTerm points to a term
instBlockage points to a blockage
pathSeg routing segment
via routing via
patchMetal routing patch rectangle

viadef holds one or more shapes (rectangles or polygons) on
two consecutive metal layers with shape(s) in the middle cut

layer, realizing physical connection between neighboring metal

layers at the same x-y coordinate. We summarize the design

rules that we support in Table III. For definitions, examples,

and detailed handling methodology of each rule, please refer

to [36].

TABLE III: Design rules.

// metal layer
WIDTH defaultWidth ;
[MINWIDTH minWidth ;]
SPACINGTABLE
PARALLELRUNLENGTH {length} ...
{WIDTH width {spacing} ...} ... ;

[SPACING minSpacing SAMENET [PGONLY] ;]
[MINSTEP minStepLength [MAXEDGES maxEdges] ;]
[SPACING eolSpacing ENDOFLINE eolWidth WITHIN eolWithin
[PARALLELEDGE parSpace WITHIN parWithin [TWOEDGES] ;] ...
// cut layer
{SPACING cutSpacing [CENTERTOCENTER]
[ ADJACENTCUTS numCuts WITHIN cutWithin [EXCEPTSAMEPGNET]
| PARALLELOVERLAP
| AREA cutArea] ;}...

[SPACING cutSpacingSN [CENTERTOCENTER] SAMENET ;]

B. Block

The top block describes the flattened logical and physical

connections, following the DEF model. There are four major

types of objects: term, blockage, instance and net. A refer-

ence block is a standard or macro cell from LEF, having the

same data structure as the top block, except that only terms

and blockages are populated.

1) Term: Terms are IO pins for the top block, and standard

or macro cell pins for the reference blocks. Each term consists

of one or more physical pins. Each pin consists of one or more

physical shapes across one or more metal and cut layers.1

2) Blockage: Blockages are user-defined routing blockages

from DEF BLOCKAGES for the top block, and are from LEF

OBS statements for reference blocks. We reuse the pin object

to hold physical shapes of the blockages.

3) Instance: Instances are from DEF COMPONENTS.

Each instance is an instantiation of either a standard cell or

1A term including more than one pin with “MUSTJOIN” keyword indicates
that the two pins should be physically connected in detailed routing. In this
work, we assume that each term holds one physical pin, so as to simplify the
description.
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a macro block, holding zero or more instance terms and

instance blockages. An instance term points to the related

term from its reference block. An instance blockage points to

the related blockages from its reference block.
4) Net: Nets are from DEF NETS and SPECIALNETS. A

net stores its logical connections, and its physical connections,

i.e., pathSegs, vias and patchMetals. A pathSeg is a point to

point routing wire on a specific layer, defined with the start

and end points, width and extensions. A via is an instantiation

of viadef at a specific coordinate. A patchMetal is a patching

rectangular metal used to satisfy various design rules.

Other types of objects in a block include boundary, track-
Pattern, gcellPattern, marker, etc. The gcellPattern object

defines the global routing cells (GCells) [7] in 2D grids;2 and

marker object represents a design rule check (DRC) violation,

including the bounding box, layer, violation type and source

objects. In our implementation, we also build several assisting

objects and structures. Some of the procedures are described

in Section IV. A complete picture and details of the database

implementation are visible at [37].

IV. FLOW

In this section, we describe the detailed routing flow. As

shown in Figure 2, the inputs to the router are LEF, DEF and

guide files. LEF and DEF files are industry-standard formats.

The route guide file serves as the global routing solution.

Given the inputs, we first set up the design database. Next,

we take several data preparation steps. Then, we perform track

assignment, multiple iterations of detailed routing and output

a routed DEF.

A. Data preparation
The data preparation step processes the design database

to generate assisting structures, including via ordering, guide

processing, region query, DRC LUT generation and pin access

analysis.
1) Via ordering: Via ordering is the step to select default

viadef(s) used for pin access and detailed routing. We sort

all viadefs according to (i) number of cuts; (ii) default via

property; (iii) enclosure direction; (iv) enclosure area; and (v)

enclosure width. In detailed routing, we only use the minimal-

enclosed default single-cut viadef, with both lower and upper-

layer enclosure along the preferred routing direction. In pin

access analysis, in addition to the viadef we use in detail

routing, we also use the minimal-enclosed default single-

cut viadef, with the lower-layer enclosure orthogonal to the

preferred routing direction, and the upper-layer enclosure

along the preferred routing direction. Overall, we select one

of two viadefs to access the pin, and only use one viadef for

all other connections. Figure 5 illustrates the ordered viadefs

for detailed routing, additional viadef for pin access analysis,

and a non-preferred viadef.3

2In our work, we derive the GCell size based on global routing solution,
in the “route guide” format of ISPD18, ISPD19 and ICCAD19 contests. GR
solutions in practice (to our knowledge) commonly use ∼15 M2 tracks as a
typical GCell dimension.

3Ultimately, the via ordering step should be replaced with a more robust
via generation and LEF matching strategy in a future work.

Fig. 2: Overall flow.

2) Guide processing: Guide processing [7][18] is the step

to transform a set of input route guides into a standardized

tree-like global routing solution.4 A route guide specifies a

rectangular region on a specific metal layer. A global routing

solution for a net may contain several route guides on some or

all of the metal layers. If we abstract the guide by drawing a

center line for each guide along the preferred routing direction,

we take the center lines to form a connected graph, as shown

in Figure 3(e).

To standardize on a guide dimension that is conducive to

form a trimmed tree-like global routing solution, we first

extract the most common offset and width of all guides to

form GCELLGRIDS [7], then process all route guides with

splitting, merging and bridging techniques. Given the input

guides in Figure 3(a), we first split the guide according to the

4Ultimately, the solution quality of detailed routing may be improved with
an input of a better global routing solution that satisfies our guide processing
behavior in a future work.
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Fig. 3: Preprocessing: (a) initial route guides; (b) splitting; (c) merging; (d) bridging and (e) preprocessed guides. The preferred direction for M1 is vertical,
and for M2 is horizontal.

Fig. 4: DRC LUT: (a) via to jog (vertical); (b) via to jog (horizontal); (c) via to via (vertical); (d) via to via (horizontal); (e) jog to jog (vertical); and (f) jog
to jog (horizontal).

Fig. 5: Illustrations of ordered viadefs: (a) preferred viadef for detailed routing;
(b) additional viadef for pin access analysis; and (c) non-preferred viadef.

GCELLGRID along the preferred routing direction for each

metal layer, as shown in Figure 3(b); we then merge touching

guides along the preferred routing direction, as shown in

Figure 3(c). Last, for abutting guides along the non-preferred

routing direction, we bridge them by creating upper-layer (or,

otherwise, lower-layer) guides, as shown in Figure 3(d).

The above procedures guarantee a connected global routing

solution as long as the input guides satisfy the assumption

described in [7]. To remove redundant edges (i.e., loops) in

a global routing solution, we further perform A* search from

any pin to all other pins through the processed guides. All

off-path guides are removed.

3) Region Query: Region query is the data structure for

fast shape queries. The input to the region query engine

is a bounding box on a specific layer. The outputs are all

intersecting shapes, in the form of {bbox, owner} pairs. For

polygon shapes, we decompose the polygon into rectangles to

be used in the region query engine. The owner belongs to one

of the following types: term, instTerm, blockage, instBlockage,

pathSeg, via or patchMetal.

4) LUT Generation: LUT (lookup table) generation is the

step to construct assisting data structure to avoid same-net

design rule check violations. In grid-based path search, we

use object cost (described in Section V-B) to avoid potential

DRCs to existing objects. To prevent DRCs within the current

path, i.e., same-net violation, we characterize the minimum

default-width routing length between any two-object pair of

an up via, a down via and a jog, on all metal layers, and in all

directions. Figure 4 illustrates three types of minimum length

requirement: via to jog, via to via, and jog to jog, in both x and

y directions. In our implementation, we characterize separately

for the up via and down via. In grid-based path search, we

apply additional cost if the minimum length between vias and

/ or jogs is not satisfied.

5) Pin access analysis: For each pin, we generate at least

K access points (K = 3 in our implementation) using the

pin access analysis methodology from [19]. An access point

is an x-y coordinate on a metal layer where the detailed router

ends routing. Each access point stores from which direction

the router can access the pin. There are six access directions:

west, east, south, north, up and down. For the planar four

directions, we check whether a wire can be used to access

the pin DRC-free. For the up direction, we check whether the

first two vias according to the via ordering can be used to

access the pin DRC-free. We do not check or use the down

access direction in this work. Each access point may indicate

multiple valid access directions. For the up direction, we also

store which vias are valid to use, among which one via is

primary (preferred to use). The access point must be on the

pin shape.

B. Track assignment

We adopt a simplified version of greedy track assign-

ment [33]. To reduce the problem size and lay a foundation

for future parallel implementation, we perform the track

assignment every 50 GCell panels. Each GCell panel has

length along the preferred routing direction and spans 50

GCell heights. The initial track assignment is applied once

on all horizontal layers, then on all vertical layers. According

to [33], we then perform one iteration of track reassignment

to optimize the solution quality.
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Fig. 6: Grid graph: (a) preferred-direction grid lines on Metal1; (b) preferred-direction grid lines on Metal2; (c) preferred-direction grid lines on Metal3; and
(d) overlay of grid lines (3D grid graph projected onto the x-y plane).

C. Detailed routing

Given the track assignment result, we perform multiple

iterations of detailed routing. In each iteration, we partition

the design into 7×7, non-overlapping GCell-aligned clips,

and create one detailed routing worker for each clip. Each

detailed routing worker first initializes its own data structures

(worker database) from the global database, then performs

routing and design rule checking, all without touching the

global database. Last, each worker commits the changes by

writing back to the global database. In alternate iterations,

we shift the partitioning of 7×7 clips with an offset of 0

and -4 to enable optimization at clip boundaries. We describe

the detailed routing flow inside the detailed routing worker in

Section V.

In the construction of a detailed routing worker, each

clip comes with three bounding boxes: standard, DRC and

extended box. The standard box is the above-mentioned

7×7, non-overlapping GCell-aligned clip. The detailed routing

worker can only modify objects with their center lines on or

within the standard box. The DRC box is slightly larger than

the standard box, enclosing the bounding box of all modifiable

objects. We only count and writeback those markers intersect-

ing with the DRC box. The extended box is slightly larger than

the DRC box, allowing design rule check across the DRC box.

In the detailed routing worker database, all objects within the

extended box are constructed locally. Only the objects that

are on or within the standard box are modifiable, while other

objects are fixed. The fixed objects are used for cost calculation

and design rule checking.

V. DETAILED ROUTING WORKER

In this section, we describe the methodology to perform

gridded, A*-based detailed routing inside the detailed routing

worker. We first describe the grid graph structure and various

types of costs. Then, we describe the overall ripup-and-

reroute flow of a detailed routing worker. Last, we detail the

methodology to route one net.

A. Grid graph

The grid graph is an essential part of detailed routing

because the path search algorithm works directly on the grid

graph, and various costs and properties are associated with the

grid vertices and edges in the grid graph. In TritonRoute, we

build a non-regular-spaced 3D grid graph supporting irregular
tracks and off-track routing.

1) Construction: We now describe how to generate the

preferred-direction grid lines on each metal layer. We first

form all grid lines that are on-track – i.e., align with the DEF

TRACKS definitions. Then we form all grid lines that are off-

track – i.e., the center lines along the preferred direction for

any existing pathSegs, vias and pin access points. We also form

the grid lines on the boundary. We do not generate the grid

lines in the non-preferred direction. However, bi-directional

routing is still available as described in Section V-A2.

Figure 6 shows how we form the grid lines. Figure 6(a)

shows horizontal Metal1, with 7 regular-spaced tracks from

DEF. The Metal1 pin has an access point with an off-track

y-coordinate. Thus, we create an off-track grid line according

to the pin access point location. Figure 6(b) shows vertical

Metal2, with 5 regular-spaced tracks from DEF. We addition-

ally create an off-track grid on the left boundary. By always

creating grid lines along the boundaries of the routing region,

we make sure that at least one path exists in the grid graph in

any direction, in the case that no on- and off-track grid lines

exist (e.g., given a small routing region). Since the center line

of the Metal1 pin access point aligns with a Metal2 track,

we do not build additional off-track grid lines on Metal2.

Similarly, we build grid lines on Metal3. Note that Metal1

and Metal3 grid lines do not necessarily align.

In Figure 6(d), we show the overlay of x- and y-direction
grid lines. The grid vertices are formed by intersecting all x-
and y-direction grid lines, and repeating |Z| times along the z
direction. Each vertex has six neighbors (except the boundary

vertices) – west, east, south, north, down and up; this is the 3D

grid (projected into the x-y plane) that we use in TritonRoute.

TABLE IV: Edge properties.

Type Name Meaning
boolean isEnable whether the edge exists in path search
boolean isOnTrack whether the edge is on track
boolean isOnPrefDir whether the edge is on the preferred direction
viadef specialVia special via
int objCost object cost
int markerCost marker cost

TABLE V: Vertex properties.

Type Name Meaning
enum prevDir incoming direction
boolean isSrc whether the vertex is a source
boolean isDst whether the vertex is a destination

2) Edge: The edge properties are summarized in Table IV.

As shown in Figure 6, not every grid line exists in every metal

layer. We use isEnable to show whether the edge exists in the

path search. A planar edge in the preferred direction is enabled

if it is on a current layer grid line. A planar edge in the non-
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preferred direction is enabled if it is on an upper-layer grid line

(if any, otherwise lower-layer). Via edges are enabled between

any two preferred-direction grid lines on neighboring metal

layers. For each edge, we use isOnTrack to show whether the

edge is on track; we use isOnPrefDir to show whether the

edge is on the preferred direction. For a via edge, specialVia
indicates whether the router should choose a special via instead

of the default via. Only pin access points may have this special

via property. We preprocess and mark relevant via edges for

all up-via pin accesses (using non-default via). There are two

types of costs associated with each edge, object cost and

marker cost. We describe these costs in Section V-B.

3) Vertex: The vertex properties are summarized in Ta-

ble V. In A*-based path search, after a path is found, we

only know the ending vertex. We use prevDir to indicate the

incoming direction of the current vertex so that we are able

to trace back the path. We use isSrc (resp. isDst) to indicate

whether the vertex is a source (resp. destination).

B. Routing cost

We use two types of costs: object cost, and marker cost.
Overall, object cost is applied around an existing shape. This

cost preemptively guides the path search to go around existing

objects to avoid potential DRCs. The marker cost is applied

around an existing DRC marker. In the ripup-and-reroute

scheme, this cost helps the nets to be routed avoiding the

DRC hotspots given the history of DRC data.

1) Object cost: Object cost is the cost originated from an

object, and stored in neighboring edges to the object. We mod-

ify this cost whenever the worker database adds or removes

an object, e.g., at the time of database initialization, after net

ripup, or after routing of one net. We use the object cost to

prevent potential design rule check violations. The evaluation

of object cost is non-precise but quick, and does not invoke

the DRC engine.5 We support three types of spacing rules for

object cost: (i) SPACINGTABLE PARALLELRUNLENGTH;

(ii) SPACING ENDOFLINE; and (iii) SPACING (cut).

For parallel run length spacing, given a target object,
we first draw an expanding region in which objects on the

intersecting edges may cause DRCs, as shown in Figure 7(a).

The expanding region extends beyond the target object up to

the maximum required spacing plus half the default width for

planar edges, and half the via enclosure for via edges. We

then assume a shadow object (either a default-width pathSeg

or a via) on each of the neighboring planar and via edges,

and check against the target object, as shown in Figure 7(b).

For a pathSeg on a planar edge, since the exact length of

the shadow object can be arbitrarily longer than the edge

length, we add pessimism by assuming maximum parallel run

length between the two objects to accelerate convergence. The

maximum parallel run length is the length of the target object

regardless of the actual parallel run length. For each via edge,

5We do not have a metric for “precision” of object cost evaluation. The
goals of the quick object cost evaluation, in decreasing priority order, are:
(i) quickness, and (ii) help avoidance of repeated cycles of violations (e.g.,
arising due to DRC marker cost in A* search). In practice, we see that our
use of quick object cost evaluation – which naturally must be pessimistic –
helps avoid cycling.

we assume a default via, or the special via stored with the

edge, and check the via enclosure against the target object. The

parallel run length between a shadow via enclosure and the

target object is calculated by their actual parallel run length.

We modify the cost of the edge if there is a violation. Here, the

modification of the costs also helps to avoid short violations

since the expansion region implicitly includes those edges that

may have potential short violations with the target object.

Fig. 7: Object cost from parallel run length spacing: (a) expanding region;
and (b) shadow object.

For end-of-line spacing, we only check the target object if

it is a via, and the spacing is only checked along the preferred

routing direction of the metal layer. Spacing orthogonal to the

preferred routing direction is not checked to avoid pessimism

since almost all jogs end with a preferred-direction routing

or a default via, making the line end a non-end-of-line edge.

Figure 8 illustrates the procedure.

Fig. 8: Object cost from end-of-line spacing: (a) expanding region and (b)
shadow object. The preferred routing direction is horizontal.

For cut spacing, given a target via, we check all neighboring

via edges which could potentially cause a cut spacing viola-

tion. For each via edge, we assume a default via (or the special

via stored with the edge) and check against the target via. We

modify the cost of the via edge if there is a violation.

The object cost has no history. For example, an object cost

is added to the neighboring edges of the target object after the

object is created, and subtracted from the neighboring edges

of the target object after the object is removed. The object cost

calculation supports same-net overriding, blockage spacing

overriding and other exceptions. For more details pertaining

to this and other parts of our discussion, please refer to [37].
2) Marker cost: Marker cost is the cost applied according

to the DRC markers after each call to the DRC engine. For

each marker, we get all objects touching the marker, and add

costs to the nearest edge(s) that are used to form the objects.

The marker cost has history within the detailed routing worker.

For example, a marker cost is added to an edge and decayed

over time (currIter in Algorithm 1), but is never subtracted

due to the removal of a specific marker. Here, marker cost

history only persists within the detailed routing worker. There

is no history between detailed routing iterations shown in

Figure 2.
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C. Routing flow

Now we describe the routing flow inside a detailed routing

worker. In Algorithm 1, Line 2 first initializes the worker

database from the global database. In this step, we construct a

local netlist from the connectivity of routing objects. Figure 9

shows an example, where a single net passes through the

standard box twice, with two parts disjoint. In this case,

we construct two subnets so that ripup-and-reroute does not

change the connectivity of the net.

Fig. 9: Local netlist construction: two disjoint subnets constructed in the
detailed routing worker from one global net.

In Lines 3 – 20, we perform up to maxIter iterations of

ripup-and-rerouting.6 In each iteration, we ripup the prob-

lematic nets and reroute each one sequentially. Line 4 adds

the marker cost according to all existing markers. Line 5

gets all nets that are associated with markers. We order the

nets according to their distance to the nearest marker and

route them sequentially. Line 6 rips up those nets and Line 7

subtracts the object cost from the ripped-up objects. Here, the

boundary objects outside the standard box are not removed and

their object costs remain. Since nets are routed sequentially,

according to the net ordering, we would like to avoid the ith

net blocking the pin access of the jth(j > i) net. In Line 8,

we reserve the pin access of all unrouted nets (ripped-up nets)

by adding the object cost of their preferred pin access (an up

via) as if those pin access points are used.

In Lines 9 – 15, we route each net once according to the net

ordering. Before routing, Line 10 unreserves the pin access for

the current net by subtracting the corresponding object cost of

the preferred pin access (up via). Line 11 subtracts the object

cost for the boundary objects outside the standard box to avoid

unnecessary costs when we connect the net to the boundary

pin. Line 12 routes the current net. Line 13 adds the object cost

for all the newly routed objects. Line 14 adds back the object

cost for boundary objects to prevent design rule violations

between these objects to the remaining unrouted nets. Lines 16

– 19 perform design rule checking, and terminates the ripup-

and-reroute flow once the clip is clean.

Line 21 commits the worker database back to the global

database.

6Note that this number of iterations is different from the number of “outer”
iterations in Figure 2. For the results that we report in this work, we perform
seven (outer) iterations. The maxIter number of iterations in Algorithm 1
defines the maximum number of ripup-and-reroute iterations a net inside a
DRWorker can undergo. In the current implementation / results represented in
this paper, we use (1, 4, 4, 4, 4, 4, 4) as the maxIter (for ripup-and-reroute)
for each net in the seven “outer” iterations, respectively.

Algorithm 1 Routing flow

1: Input: worker database, worker markers markers
2: WorkerDBInit()
3: while currIter < maxIter do
4: addMarkerCost(markers)
5: nets ← getMarkeredNets(markers)
6: ripupNets(nets)
7: subObjCost(nets)
8: reservePA(nets)
9: for all net ∈ nets do
10: unreservePinAccess(net)
11: subBoundCost(net)
12: routeOneNet(net)
13: addObjCost(net)
14: addBoundCost(net)
15: end for
16: DRC(nets)
17: if numMarkers = 0 then
18: break
19: end if
20: end while
21: DBCommit()

D. Routing one net

1) Flow: We now describe the methodology to route one

net in a detailed routing worker. In our current implementation,

in the standard box, a net is either fully routed or unrouted, but

not partially routed. Algorithm 2 describes the methodology

to route one net. Line 2 gets all unconnected pins, including

standard box boundary pins and pins from instTerm and term.

Line 3 holds the set of visited grid vertices, and we initialize

the set to be empty. Lines 4 and 5 select the source pin

to perform path search and remove it from the unconnected

pins. To select the source pin, we first calculate the center

of gravity for all pins in the x-y plane, then select the pin

furthest away from the center of gravity as the source. Line

6 performs the initialization described in Section V-D2. In

Lines 7 – 11, we perform the path search as long as there

are still unconnected pins. After path search, we update the

grid graph in preparation for the next round of path search.

The writeDB function backtraces the path to create the routing

objects according to the path.

Fig. 10: Minimum area patch metal: (a) patch metal considering area outside
of standard box; and (b) patch metal always along the preferred routing
direction even if the routing ends in the non-preferred direction. We assume
the preferred routing direction is horizontal. We do not allow the patch metal
to exceed the standard box. If there are more than one patch metal choices,
e.g., adding to the left or to the right of a routing object, we choose the one
with smaller object cost.

During backtracing, we calculate the total metal area and

add necessary patch metals to satisfy the minimum area rule.

The patch metals are always created with default routing width

along the preferred routing direction. In our implementation,
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we also build assisting structures to calculate necessary patch

metal area for objects connected to the boundary pin. Figure 10

gives two examples of patch metal addition. The path search

is completed once all pins are connected. The path search

algorithm is described in Algorithm 4. The update function is

described in Algorithm 5.

Algorithm 2 Route one net

1: Input: net n, grid graph G
2: unConnPins ← allPins(n)
3: visitedGrids ← ∅
4: srcPin ← selectSrcPin(unConnPins)
5: unConnPins.removePin(srcPin)
6: init(n, srcPin, unConnPins, visitedGrids, G)
7: while not isEmpty(unConnPins) do
8: path ← search(visitedGrid, G)
9: update(n, path, unConnPins, visitedGrids, G)
10: writeDB(n, path)
11: end while

2) Initialization: Algorithm 3 describes the initialization

procedure. In Line 2, we first reset the previous direction flag

for each grid vertex. In Lines 3 – 6, we set the source flag

for all vertices on the access points of the source pin, and

add the vertices to the visited grids. In Lines 7 – 11, we set

the destination flag for all vertices on the access points of all

destination pins. After initialization of the grid graph, the core

path search algorithm does not need to look for objects and

properties of the net, which is beneficial to the runtime.

Algorithm 3 Initialization

1: Input: n, srcPin, unConnPins, visitedGrids, G
2: G.resetPrevDir()
3: for all grid ∈ srcPin do
4: G.setSrc(grid)
5: visitedGrids.add(grid)
6: end for
7: for all dstPin ∈ unConnPins do
8: for all grid ∈ dstPin do
9: G.setDst(grid)
10: end for
11: end for

3) Path search: Algorithm 4 details the path search. The

A*-based path search is based on a priority queue. Each

element in the priority queue is an element of the search’s

wavefront, representing that a path exists from the source up

to the wavefront grid vertex. In Lines 3 – 5, we first push

all visited grids (source) to the queue as the initial wavefront

vertices. Then in Lines 6 – 16, we pop the wavefront vertex

with the least cost. We use the previous direction to indicate

whether the wavefront vertex has been visited before. Lines 9

– 11 skip the wavefront vertex if it has been visited before. In

Lines 12 – 14, we check whether the wavefront vertex is the

destination, and return the path when reaching the destination.

Otherwise, we expand the wavefront vertex by pushing its

neighbors into the priority queue (with proper cost) as new

wavefront vertices.

Here, the cost in the priority queue is the A* cost, consisting

of an existing path cost and an estimated future cost, as shown

in Equation (1). Whenever we expand from a wavefront vertex

to its neighboring vertex, the existing cost is the cost from

the wavefront vertex plus the cost to its neighbor, as shown

Algorithm 4 Search

1: Input: visitedGrids, G
2: Initialize wf
3: for all grid∈visitedGrids do
4: wf.push(grid)
5: end for
6: while not isEmpty(wf) do
7: currGrid ← wf.top()
8: wf.pop()
9: if hasPrevDir(currGrid) then
10: continue
11: end if
12: if isDst(currGrid) then
13: return path
14: else
15: expand(currGrid)
16: end if
17: end while

in Equation (2). The cost is the sum of edge length, plus

8× edge length if the edge has a non-zero object cost, and

64× edge length if the edge has a non-zero marker cost. In

addition, we apply a penalty p if any match to the DRC LUT

is found. The estimated future cost is the Manhattan distance

to a pre-determined destination, as shown in Equation (3). If

there are more than one unconnected pins to be connected,

the pre-determined destination is the bounding box of the

unconnected pin that is the closest to the bounding box of all

visited grids. The Manhattan distance in z direction (between

two neighboring metal layers) is calculated as 4× the lower

metal layer pitch.

costtot = costwf ′ + costest (1)

costwf ′ = costwf + lene + objCoste+

markerCoste + p (2)

costest = distwf ′,dst (3)

As described in Lines 9 – 11, we avoid expanding an

already-visited vertex by checking its previous directional

flag. In an ideal A*-based path search with a consistent path

cost and a lower-bounded estimated future cost, each vertex

only needs at most one visit to get the minimum cost path.

However, considering the inconsistent nature of the penalty

applied from the DRC LUT, the worst-case complexity of A*-

based path search becomes O(n2). To balance the tradeoff

between runtime and solution quality, we write the previous

direction to a vertex only after two more wavefront expansions

are performed from that vertex.
4) Update: Algorithm 5 describes the methodology to up-

date the grid graph. In Line 2, we reset the previous direction

flag for every grid vertex in preparation of the next path search.

In Lines 3 – 6, we set the source flag for every grid vertex

along the path. We then add these grid vertices to the visited

grids. Here the source flag and the visited grids serve the same

purpose as they both identify the new sources for the next

round of path search. However, visited grids are stored in a

vector-like container to allow us to initialize the wavefront for

the next path search in batches. In Lines 7 – 15, we identify

the destination pin that we route to in the current round of

path search, remove it from the unconnected pins, and reset

the destination flag on all access points of the destination pin.
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We now describe two special cases for pin feedthrough.
Pin feedthrough describes a scenario where two (or multiple)

parts of the net are connected to different access points of the

same pin. We can either enable, or disable pin feedthrough.

Disabling pin feedthrough forces that only one access point

per pin can be used.

In case of enabling feedthrough, all access points of the

destination pin, even those we do not route to, now become

new sources for the next round of path search, as shown in

Lines 12 –14.

In case of disabling feedthrough, special handling method-

ology is needed for the first source pin of the net, described

in Lines 17 – 24. Recall that in Line 4 of Algorithm 3, we set

the source flag on all access points of the source pin. Given

feedthrough disabled, we must reset the source flag on all

unused access points of the source pin once the first path

search completes.

Algorithm 5 Update

1: Input: n, path, unConnPins, visitedGrids, G
2: G.resetPrevDir()
3: for all grid ∈ path do
4: setSrc(grid)
5: visitedGrids ← add(grid)
6: end for
7: endGrid ← path.end()
8: currDstPin ← findPin(endGrid)
9: unConnPins.removePin(currDstPin)
10: for all grid ∈ currDstPin do
11: G.resetDst(grid)
12: if isAllowPinAsFeedThrough() then
13: G.setSrc(grid)
14: end if
15: end for
16: beginGrid ← path.begin()
17: if not isAllowPinAsFeedThrough() then
18: if findPin(beginGrid) then
19: currSrcPin ← findPin(beginGrid)
20: for all grid �= beginGrid ∈ currSrcPin do
21: G.resetSrc(g)
22: end for
23: end if
24: end if

VI. EXPERIMENTS

In this section, we present experimental setup and results.

A. Setup

We implement our router in C++ with LEF/DEF parser [40]

and Boost C++ libraries [39]. We perform experiments using

the ISPD-2018 benchmark suite [25]. The ISPD-2018 bench-

mark suite provides 10 testcases in 45nm and 32nm nodes,

with up to 290K standard cells and 182K nets. These designs

are industrial benchmarks – including large memory cells,

off-track pin access, IO ports, and power and macro block-

ages – with realistic design rules offered in industry-standard

input/output formats. ISPD-2018 benchmark information is

summarized in Table VI.

The ISPD-2018 contest evaluation metrics consist of three

components: (i) routing, including wirelength and via count;

(ii) guides and tracks obedience, including out-of-guide wire

and vias, off-track wire and vias, and wrong-way wire; and (iii)

DRCs, including area of metal shorts, number of minimum

area violations and number of spacing violations. However, in

the experimental results below, we do not report (ii), and make

several improvements to (iii) according to the following.

• We do not strictly obey the guides since TritonRoute is

not targeting the ISPD-2018 contest. According to the

contest organizers, strict guide obedience was never their

initial intention although all participating teams and the

following published papers all strictly follow the route

guides.

• We do not report the off-track and wrong-way routing

although they are already considered throughout the

routing flow. In all our reported testcases, such off-track

and wrong-way routing account for 0.68% of the total

wirelength on average.

• We report all types of DRCs, including all ISPD-2018

centric DRCs plus (number of) metal short, non-sufficient

metal overlap and minimum width. The number of metal

short is a good indicator of the strength of the detailed

router. Non-sufficient metal overlap and minimum width

are two design rules existing in the input, but not con-

sidered in the contest evaluation. We believe that the

reporting of all types of DRCs effectively forbids any

optimization targeting the contest metric.

Among all recently published academic detailed

routers [13][22][31] that are capable of delivering ISPD-2018

contest solutions, Dr. CU 2.0 [22] dominates the solution

quality for all ten testcases in terms of DRCs. Thus, we

compare our TritonRoute to Dr. CU 2.0. All experiments are

performed using a single thread on an Intel Xeon server.

B. Results

Experimental results are shown in Table VII and Table VIII.

Table VII gives wirelength, via count, memory consumption

and runtime; Table VIII gives the details of DRCs.

As a prerequisite, a routing solution is valid only if there

are no open nets. All of our reported solutions meet the con-

nectivity requirement. Furthermore, our solution guarantees a

loop-free and dangling wire-free solution (except the minimum

area patch metals).

We achieve DRC-clean solution for ispd18 test1, and reach

an unprecedented, extremely low level of DRCs (<20) in

seven of 10 testcases while consuming substantially reduced

memory, with similar single-threaded runtime. This translates

to a 99.3% reduction of DRCs as compared to known best

detailed routing solutions from all published academic detailed

routers. For the remaining three testcases, we reduce DRCs

by 75.1% on average, and by 60.0% at a minimum. Overall,

compared to the known best detailed routing solutions, Tri-

tonRoute improves wirelength by up to 0.8% (avg. 0.4%),

via count by up to 16.1% (avg. 9.3%), and DRCs by up

to 100% (avg. 92.0%). TritonRoute completes routing with

smaller wirelength and smaller via count, and leaves only a

fraction of DRCs compared to all other academic detailed

routers.

We have also performed a case-study experiment using

different standard box sizes to analyze the tradeoff between

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on July 12,2020 at 21:19:56 UTC from IEEE Xplore.  Restrictions apply. 



0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3003234, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

11

TABLE VI: Benchmark information [25].

Benchmark #std #blk #net #pin #layer Die size Tech. node
ispd18 test1 8879 0 3153 0 9 0.20×0.19mm2 45nm
ispd18 test2 35913 0 36834 1211 9 0.65×0.57mm2 45nm
ispd18 test3 35973 4 36700 1211 9 0.99×0.70mm2 45nm
ispd18 test4 72094 0 72401 1211 9 0.89×0.61mm2 32nm
ispd18 test5 71954 0 72394 1211 9 0.93×0.92mm2 32nm
ispd18 test6 107919 0 107701 1211 9 0.86×0.53mm2 32nm
ispd18 test7 179865 16 179863 1211 9 1.36×1.33mm2 32nm
ispd18 test8 191987 16 179863 1211 9 1.36×1.33mm2 32nm
ispd18 test9 192911 0 178857 1211 9 0.91×0.78mm2 32nm
ispd18 test10 290386 0 182000 1211 9 0.91×0.87mm2 32nm

TABLE VII: Comparison of wirelength, via count, memory usage and runtime between TritonRoute (TR) and Dr. CU (CU).

Benchmark Wirelength (μm) Via count Memory (GB) Runtime (s)
TR CU TR CU TR CU TR CU

ispd18 test1 86025 86709 32912 32402 0.08 0.21 61 40
ispd18 test2 1570651 1566537 319855 325684 0.43 1.39 614 578
ispd18 test3 1750028 1743561 319456 318309 0.47 1.51 824 788
ispd18 test4 2620890 2641860 695901 729312 1.09 5.72 1866 3422
ispd18 test5 2763186 2780130 831775 965544 1.29 4.61 1722 2383
ispd18 test6 3557744 3570351 1241673 1480617 1.71 5.72 2682 3357
ispd18 test7 6482066 6517341 2041794 2402543 3.07 9.87 5023 5847
ispd18 test8 6513278 6546908 2062997 2412121 3.11 10.47 4916 5932
ispd18 test9 5442527 5476029 2049839 2410790 2.71 10.11 4378 4910
ispd18 test10 6769942 6809019 2226243 2594386 3.09 10.58 10129 9380

TABLE VIII: Comparison of number of minimum width (MinWid), non-sufficient-metal overlap (NSMet), minimum area (MAR), metal short (Short), cut
short (CShort), metal parallel run length spacing (MetSpc), metal end-of-line spacing (EOLSpc), cut spacing (CutSpc) and total design rule violations between
TritonRoute (TR) and Dr. CU (CU).

Benchmark
Design rule violations

#MinWid #NSMet #MAR #Short #CShort #MetSpc #EOLSpc #CutSpc #Total
TR CU TR CU TR CU TR CU TR CU TR CU TR CU TR CU TR CU

ispd18 test1 0 0 0 1716 0 0 0 1 0 0 0 1 0 1 0 0 0 1719
ispd18 test2 0 0 0 20048 0 0 1 1 0 0 7 49 9 9 0 0 17 20107
ispd18 test3 0 0 0 21224 0 0 112 219 1 0 17 86 10 9 2 0 142 21538
ispd18 test4 0 10 2 17 0 32 190 287 0 0 132 289 2 164 0 142 326 941
ispd18 test5 0 7 0 19 0 48 2 342 0 0 0 309 0 36 0 20 2 781
ispd18 test6 0 8 0 44 3 92 1 36 0 0 2 489 2 21 0 30 8 720
ispd18 test7 0 0 0 11 5 127 4 604 0 0 4 129 0 7 0 60 13 938
ispd18 test8 0 0 0 19 3 138 2 625 0 0 1 118 0 15 0 59 6 974
ispd18 test9 0 0 0 16 4 185 1 39 0 0 0 49 0 7 0 54 5 350
ispd18 test10 0 0 0 26 4 228 1103 3180 5 1 425 742 144 73 33 100 1714 4350

runtime and final DRC count. We sweep the standard box

size from 3×3 to 11×11 with a step size of 2 on the

ISPD18 test3 testcase. The specific testcase that we choose

has relatively high #violation-to-#instance ratio, which indi-

cates that ISPD18 test3 is a difficult and congested design

among the ISPD18 contest benchmarks. Figure 11 illustrates

the tradeoff between runtime and final DRC count with

different standard box sizes. We observe that a larger standard

box provides a larger solution space for ripup-and-reroute for

DRC fixing at the cost of longer runtime for A* search. A

standard box with size of 7×7 GCells can achieve a decent

tradeoff between runtime and final DRC count, especially for

difficult designs.

VII. CONCLUSION

In this work, we present TritonRoute, an open source

detailed router. We describe an in-memory router database,

and an end-to-end detailed routing scheme. We evaluate our

router using the official ISPD-2018 benchmark suite, and show

that we reach an unprecedented, extremely low level of DRCs

(<20) in seven of ten testcases, a 99.3% reduction of DRCs

on average compared to known best detailed routing solution

Fig. 11: Illustration of tradeoff between runtime and final DRC count with
various DRWorker standard box sizes in unit of GCell.

from all published academic detail routers. Overall, compared

to the known best detailed routing solution, TritonRoute

improves wirelength by up to 0.8% (avg. 0.4%), via count

by up to 16.1% (avg. 9.3%), and DRCs by up to 100%

(avg. 92.0%). Due to its generic nature, our framework can

support extensions to new technologies or design rules. Our

ongoing work includes: (i) support of multi-threading; (ii)

track assignment improvement; (iii) runtime improvement; (iv)

support of advanced technology nodes (including ISPD-2019

contest benchmarks); and (v) support of via generation and

via swapping.
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